"Matematika" bölümi
Matematika    Teswir ýok   1019 gezek okaldy

Indeks

Indeks, indeksasiýa (latyn. index – görkeziji, sanaw). 1) atlaryň, predmetleriň görkezijisi, restri we ş.m. şertli belgileriň sistemasy (harply, bibliografik indeks, neşirýat indeksi, kitap söwdasynyň indeksi, poçta indeksi, azyk önümleriniň, dermanlaryň we şuňa meňzeşiň öndürilen wagtyny we saklanyş möhletini görkezýän indeksler). Sekret: Indeksler statistikada. 2) Indeks (matematikada) – matematiki aňlatmalary biri-birinden tapawutlandyrmak üçin ulanylýan harp ýa-da ….. »

Matematika    Teswir ýok   2187 gezek okaldy

Arifmetika

(grekçe arythmos – san) – sanlar we droblar hem-de olaryň üstündäki amallar hakyndaky ylym. Arifmetikanyň ösmegi algebranyň, sanlar teoriýasynyň we hasaplaýyş matematikasynyň bölunmegine getirdi. Natural sanlaryň kömegi bilen köp dürli matematiki düşünjeler düzülýär. Meselem: matematiki analiziň esasy düşünjeleri natural sanlar bilen baglanyşyklydyr. EHM-laryň operasiýalary hem sanlaryň häsiýetlerine esaslanandyr. Şu sebäbe görä arifmetika matematika ylmynyň esasyny ….. »

Matematika    1 Teswir    1974 gezek okaldy

Pifagoryň teoremasy

img

Geometriýada gönüburçly üçburçlugyň taraplarynyň arasyndaky baglanyşyklary görkezýän teorema. Bu teoremany gadymy grek alymy Pifagor subut edýär. Ilkibaşda bu teorema gönüburçly üçburçlukda gipotenuzada gurlan kwadrat, katetlerde gurlan kwadratlaryň jemine deň ululyklydyr diýip, kwadratlaryň meýdanlarynyň arasyndaky baglanyşygy görkezýärdi, ýöne bu teorema aşakdaky ýaly gysgaça alynýar: şol bir birlikde gönüburçly üçburçlugyň katetleriniň kwadratlarynyň jemi gipotenuzanyň kwadratyna deňdir. Eger ….. »

Matematika    1 Teswir    1569 gezek okaldy

Pifagoryň sanlary

Natural sanlaryň üçlügi, üçburçlugyň taraplarynyň uzynlyklary şol sanlara proporsional (ýa-da deň) bolanda gönüburçly üçburçlukdyr. Pifagoryň teoremasyna ters teorema görä, bu sanlaryň diofantyň deňlemesini  kanagatlandyrmagy ýeterlikdir. Meselem, x=3, y=4, z=5 sanlar şeýle sanlardyr. Ähli özara ýönekeý Pifagor sanynyň üçlügini aşakdaky formulalardan almak bolar: , y=2mn,  bu ýerde m we n bitin sanlar, m>n>0. Çeşme: Türkmen Sowet Ensiklopediýasy, Tom ….. »

Matematika    2 Teswir   1994 gezek okaldy

Pifagor

img

Doly ady: Pifagor Samosskiý (Samosly) (Pythagoras of Samos) (b. e. ön takmynan 570-500) – gadymy grek akyldary, dini we syýasy işgäri, pifagoreizmi esaslandyryjy. Pifagor barada her hili rowaýatlar ýaýrap, şolarda ol pähimli adam, bütin antiki we Ýakyn Gündogar ylmynyň mirasdary, “gudratly” adam hökmünde suratlandyrylýar. Ol ilki Samos adasynda ýaşaýar, soňra rehimsiz hökümdar Polikratyň syýasy garşydaşy ….. »

Matematika    Teswir ýok   1607 gezek okaldy

Gýolderiň deňsizligi

img

Tükenikli jemler üçin    görnüşli deňsizlik. Gýolderiň deňsizligi integrallar üçin şeýle ýazylýar: Bu ýerde p>1  Gýolderiň deňsizligi nemes matematigi Gýolder tarapyndan 1889 ýylda girizildi. Gýolderiň deňsizligi matematiki analizde köp ulanylýar. P=q=2 bolanda Gýolderiň deňsizligi tükenikli jemler üçin Koşi deňsizligine, integrallar üçin bolsa Bunýakowskiniň deňsizligine öwrülýär. Meňzeş makalalar:Meňzeş makala ýok

Siziň her biriňiz kömek edip bilersiňiz: Makala ýaz